Sequential Monte Carlo Methods for Multi-Object Tracking

نویسنده

  • Martin Spengler
چکیده

This document provides an overview over literature relevant to (multi-) object tracking based on sequential Monte Carlo methods. Besides milestones like [IB98a] (CONDENSATION) or [DdFG02] (sequential Monte Carlo methods), there are also some less fundamental articles, presenting some original ideas or extend the basic algorithms in a remarkable way. The reviewed articles are grouped in two major categories: single-object tracking and multi-object tracking. A third section contains various other tracking-related articles which do not necessarily use sequential Monte Carlo methods for tracking. This third section also contains some references to introductory material and tutorials. This document is in no way complete and further suggestions and recommendations are very welcomed. Please send email to [email protected].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image-Based Multi-Target Tracking through Multi-Bernoulli Filtering with Interactive Likelihoods

We develop an interactive likelihood (ILH) for sequential Monte Carlo (SMC) methods for image-based multiple target tracking applications. The purpose of the ILH is to improve tracking accuracy by reducing the need for data association. In addition, we integrate a recently developed deep neural network for pedestrian detection along with the ILH with a multi-Bernoulli filter. We evaluate the pe...

متن کامل

On the Performance of Multi-Target Passive Sonar Tracking in Clutter

The problem of tracking multiple targets with passive bearings-only measurements is extremely challenging and rarely addressed explicitly in the literature. The difficulty arises mainly due to the low information content and non-linearity of the received measurements. Furthermore, effects such as high clutter density, closely spaced targets, and crossing targets are commonplace in passive track...

متن کامل

Population Based Particle Filtering

This paper proposes a novel particle filtering strategy by combining population Monte Carlo Markov chain methods with sequential Monte Carlo chain particle which we call evolving population Monte Carlo Markov Chain (EP MCMC) filtering. Iterative convergence on groups of particles (populations) is obtained using a specified kernel moving particles toward more likely regions. The proposed techniq...

متن کامل

Group Object Tracking with a Sequential Monte Carlo Method Based on a Parameterised Likelihood Function

Group objects are characterised with multiple measurements originating from different locations of the targets constituting the group. This paper presents a novel Sequential Monte Carlo approach for tracking groups with a large number of components, applicable to various nonlinear problems. The novelty in this work is in the derivation of the likelihood function for nonlinear measurement functi...

متن کامل

Monte Carlo Algorithm for Ballistic Object Tracking with Uncertain Drag Parameter

The problem of tracking a reentry ballistic object by processing radar measurements is considered in the paper. Sequential Monte Carlo-based filter is proposed for dealing with high nonlinearity of the object dynamics. A multiple model configuration is incorporated into the algorithm for overcoming the uncertainty about the object ballistic characteristics. The performance of the suggested mult...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003